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Abstract

Increasingly volatile electricity prices make simultaneous scheduling optimization

desirable for production processes and their energy systems. Simultaneous schedul-

ing needs to account for both process dynamics and binary on/off-decisions in the

energy system leading to challenging mixed-integer dynamic optimization problems.

We propose an efficient scheduling formulation consisting of three parts: a linear

scale-bridging model for the closed-loop process output dynamics, a data-driven

model for the process energy demand, and a mixed-integer linear model for the

energy system. Process dynamics is discretized by collocation yielding a mixed-

integer linear programming (MILP) formulation. We apply the scheduling method to

three case studies: a multiproduct reactor, a single-product reactor, and a single-

product distillation column, demonstrating the applicability to multiple input multiple

output processes. For the first two case studies, we can compare our approach to

nonlinear optimization and capture 82% and 95% of the improvement. The MILP

formulation achieves optimization runtimes sufficiently fast for real-time scheduling.

K E YWORD S

demand response, integration of scheduling and control, mixed-integer dynamic optimization,
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1 | INTRODUCTION

Current efforts to reduce greenhouse gas emissions increase the

share of renewable electricity production in many countries. Due to

the intermittent nature of renewable electricity production, stronger

volatility in electricity prices or even electricity availability is

expected.1 This price volatility may offer economic benefits to indus-

trial processes that can dynamically adapt their operation and thus

their power consumption in so-called demand response (DR).2 Ideally,

DR reacts to imbalances of electricity demand and supply and there-

fore also stabilizes the electricity grid.3

A promising way to achieve DR is to consider volatile prices in

scheduling optimization1 that determines the process operation for a

time horizon in the order of 1 day.4–6 However, industrial processes

are often not supplied directly by the electricity grid but by a local on-

site multienergy system. The local multienergy system supplies all

energy demanded by the process, for example, heating, cooling, or

electricity, and exchanges electricity with the grid.7 Operating local

energy systems is a complex task as these systems typically consist of

multiple redundant units with non-linear efficiency curves and mini-

mum part-load constraints leading to discrete on/off-decisions.7 Thus,

the electricity exchange between the energy system and the grid is

not directly proportional to the process energy demand. Conse-

quently, optimal DR scheduling must consider processes and their

energy systems simultaneously. Moreover, such simultaneous sched-

uling can improve the efficiency of energy system operation by
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shifting process energy demand in time.8 Still, scheduling is usually

carried out sequentially: the process schedule is optimized first and

only then the energy system operation is optimized.9,10

The simultaneous scheduling of processes and their energy sys-

tems leads to computationally challenging problems. Process schedul-

ing can already be a very demanding task on its own if nonlinear

process dynamics need to be considered11; therefore, considering

dynamics is a major research topic in process systems engineering

referred to as integration of scheduling and control.4,5,12–15 For DR

problems, process dynamics is often scheduling-relevant2,4,5,16,17

because the time to drive the process from one steady state to

another steady state is often in the same order of magnitude as the

electricity-price time steps.

The desired simultaneous scheduling of processes and their

energy systems is especially challenging due to the simultaneous pres-

ence of process dynamics and discrete on/off-decisions in the energy

system (Figure 1). Because of the discrete decisions, standalone

energy system optimization problems are preferably formulated as

mixed-inter linear programs (MILPs).7,18–21 A MILP formulation is usu-

ally applicable because: (a) nonlinear part-load efficiencies can be

approximated reasonably well using piece-wise affine functions,21 and

(b) the dynamics of the energy system units is negligible or can be cap-

tured using ramping constraints.22

As process dynamics is often scheduling-relevant, the simulta-

neous scheduling needs to be integrated with control. Even though

conceptually, all approaches for the integration of scheduling and

control can be used, the on/off-decisions significantly increase the

computational complexity. However, scheduling must be performed

online. Harjunkoski et al.23 state that generally optimization run times

should be between 5 and 20 min.

In this work, we present a formulation for simultaneous schedul-

ing of processes and their energy systems that aims at real-time-

applicable runtimes. We rely on two promising approaches from the

integration of process scheduling and control: (i) dynamic scale-

bridging models (SBMs),24,25 where the controlled process output is

forced to follow a linear differential equation and (ii) dynamic data-

driven models.2,26–28 Specifically, our formulation consists of three

parts: (i) a SBM considering the dynamics of the production process,

(ii) a piece-wise affine dynamic data-driven model for the energy

demand of the process, and (iii) a MILP energy system model with

piece-wise affine approximations of nonlinear component efficiency

curves. We discretize the linear differential equations in time using a

high-order collocation scheme to receive linear constraints.29 Conse-

quently, we achieve an MILP formulation for the entire scheduling

problem.

A preliminary version of our approach has been presented in a

conference contribution30 where we considered DR for a building

energy system. In the present contribution, we describe our method

in more detail and apply it to three chemical production systems: a

multi-product and a single-product continuous stirred tank reactor

(CSTR) both of which are cooled by three compression chillers (CCs),

and a distillation column heated by two combined heat and power

plants (CHPs) and an electricity-driven boiler (EB). The new method

is explicitly compared against a standard sequential scheduling

approach from industrial practice.9 The remainder of this article is

structured as follows: in Section 2, the method is described in detail.

In Section 3, a first case study considering a multiproduct CSTR is

performed; in Section 4, a second case study considering a single-

product CSTR is performed; and in Section 5, a third case study con-

sidering a distillation column is investigated. Section 6 concludes

the work.

2 | METHOD

In this section, we present our method for simultaneous dynamic

scheduling (SDS) of production processes and their energy systems.

We refer to our method as SDS. The core of SDS is an efficient sched-

uling model consisting of three parts: (i) the production process,

(ii) the energy demand, and (iii) the energy system (Figure 2). Model

(i) determines the controlled process output ycv, for example, the con-

centration in a reactor. We use a SBM proposed by Baldea and co-

workers24,25 that describes a linear closed-loop response and repre-

sents the slow scheduling-relevant dynamics only. A linear SBM can

be incorporated in scheduling optimization much more efficiently than

a nonlinear full-order process model. The SBM relies on an underlying

control to enforce the desired linear closed-loop response. The

closed-loop response describes the evolution of the controlled vari-

able ycv and its time derivatives depending on the set-point wSP:

ycvþ
Xr

i¼1

τi
diycv
dti

¼wSP: ð1Þ

In Equation (1), r is the order of the SBM and τi is the time constant.

We discuss both order and time constants in the following subsection.

To linearize the closed-loop response, we propose to place a set-point

filter31 in front of the controlled plant (Figure 2). This set-point filter

converts the piece-wise constant set-point wSP given by the schedul-

ing optimization to a smooth filtered set-point wSP,fil that can be

F IGURE 1 Volatile grid electricity prices call for a simultaneous
scheduling of production processes and their local energy supply
systems. While energy systems introduce integer decision variables,
processes often exhibit scheduling-relevant dynamics. Simultaneous
scheduling thus results in computationally challenging mixed-integer
dynamic optimization (MIDO) problems.
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tracked by the underlying process control such that ycv ≈ wSP,fil. In

essence, we assume that the linear dynamics of the set-point filter

can model the process output dynamics for the scheduling-relevant

time scale. Instead of the combination of set-point filter and tracking

control, previous publications used exact input–output feedback line-

arization24,31,32 or scheduling-oriented model predictive control (SO-

MPC).25 The proposed set-point filter increases the flexibility of the

scale-bridging approach as it allows to use non-model-based tracking

controls, for example, PID-control,31 as well.

A disadvantage of the SBM is the resulting conservatism because

the time constants need to be chosen such that the desired linear

closed-loop response can be realized in all operating regimes. There-

fore, the closed-loop response is slower than necessary in some oper-

ating regimes.

The main advantage is that the scale-bridging Equation (1) is more

than an approximation: whenever the actual value of ycv deviates from

the closed-loop response described by Equation (1), the underlying

control acts to bring the controlled variable ycv back to the desired

closed-loop trajectory. Consequently, deviations of the controlled var-

iable from its optimized trajectories are kept small.

Note that, in this article, we study the case of a single SBM,

whose application is straightforward for single-input single-output

(SISO) processes where the SBM deals with the only controlled vari-

able ycv. In the multiple input multiple output (MIMO) case, a vector

of output variables ycv is controlled; still, the number of slow

scheduling-relevant variables is typically small.4,25,26 Moreover, for

flexible DR operation, often, only one scheduling-relevant quantity ρ

is varied to shift energy demand in time, for example, the production

rate or product purity. A single SBM for this quantity ρ is sufficient if

all controlled outputs are either maintained constant irrespective of

the scheduling-relevant quantity ρ or are alternatively coupled with ρ.

For instance, the hold-up of process units might be maintained con-

stant irrespective of flexible operation. An example for coupling of

controlled process outputs is given in the initial SBM paper where Du

et al.24 consider a reactor with concentration and temperature as con-

trolled outputs but only an SBM of the concentration during schedul-

ing. After scheduling, Du et al. derive a set-point signal for the

temperature from the set-point signal of the concentration. Conse-

quently, often, only one SBM needs to be tuned even though multiple

inputs and outputs are present. Such a case is also shown in our third

case study, where we consider a 4 � 4 MIMO process.

Model (ii) is a dynamic data-driven model2 that determines the

process energy demand yed taking the current state of the production

process as inputs, that is, the controlled variable ycv and its time deriv-

atives. In principle, a wide range of dynamic data-driven models

derived from recorded data, or mechanistic models can be used here.

Examples of dynamic data-driven models being applied successfully in

dynamic DR optimization can be found in the literature.26–28,33 Our

energy demand model (ii) can be dynamic and mixed-integer but must

be linear as we aim for an MILP formulation. Note that the energy

demand can, in general, not only depend on the controlled outputs

but also on other uncontrolled states. In such cases, the data-driven

energy demand model needs to have internal states that approximate

the internal dynamics of the real process. Models with internal states,

such as Hammerstein-Wiener models, are common in system identifi-

cation and have also been used in demand-response applications.28

An energy demand model with an internal state is demonstrated in

our third case study.

In contrast to the controlled process output ycv, deviations

between the actual process energy demand yed and the model predic-

tion are not corrected. Instead, we assume that such deviations are

compensated by the energy system, which is reasonable if (a) the

energy system can react significantly faster than the process and

(b) the energy system has spare capacity larger than the maximum

error of the data-driven model.

In this article, we assume that the energy demand is the only

uncontrolled process quantity that is relevant for the scheduling

objective function. In principle, other uncontrolled quantities could be

relevant for the scheduling objective function as well. For instance,

raw material consumption could vary due to flexible operation and

thus cause additional costs that should not be neglected in the optimi-

zation. In such cases, data-driven models for those quantities need to

be derived and added in the same way as for the energy demand.

Model (iii) is the energy system model that determines the energy

costs depending on the energy demand. The structure of the energy

system is modeled by energy balances that connect the energy system

components with demands. Moreover, the efficiency of individual

energy system components is modeled as a function of the part-load

ed

ec

cvec

cv

SP, f il

SP

SP

F IGURE 2 Proposed simultaneous scheduling of processes and
their energy systems based on our scheduling model consisting of
three parts. A set-point filter converts the optimized piece-wise
constant set-point wSP to a smooth filtered set-point wSP,fil, which
defines the desired linear closed-loop process behavior.

BAADER ET AL. 3 of 19
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fraction. Thus, the required input power Pc,in of an energy system

component c is a nonlinear function of the desired output power

Pc,out.
21 To obtain an MILP formulation, we follow the established

approach of modeling part-load efficiency curves as piece-wise affine

functions.7 In general, piece-wise affine efficiency curves require

binary variables. Binary variables increase the computational burden;

however, they can be avoided if the input power is a convex function

of the output power,20 which is the case for many energy system

components of practical relevance.7

By combining the three models (i)–(iii), we receive a linear differ-

ential algebraic equation system (DAE) containing integers:

dx
dt

¼ f x,y,z,wSPð Þ¼AxþByþCzþDwSP, ð2Þ

0¼ g x,y,z,wSPð Þ¼ExþFyþGzþHwSP: ð3Þ

In Equations (2) and (3), x is the differential state, y is the continuous

variable, z is the discrete variable, wSP is the set-point, t is time, f and

g are functions that are linear in x, y, z, wSP, and A–H are matrices.

Note that all variables are functions of time although not stated

explicitly to improve readability.

We choose a discrete-time MILP formulation for our simulta-

neous scheduling problem because in case of variable electricity

prices, discrete-time formulations usually perform better than

continuous-time formulations,34 as the electricity markets imposes a

discrete time structure, for example, hourly constant prices. As our

model consists of linear differential equations, time discretization with

collocation in discrete time leads to linear constraints.29

In the following, we discuss the SBM parameters and the schedul-

ing optimization problem.

2.1 | Scale-bridging model parameters

For the SBM (i), we have to determine the order r and the time

constants τi from Equation (1), as well as upper and lower bounds

for the set-point wmax
SP , wmin

SP , respectively. The order r should be cho-

sen such that the resulting reference trajectory for the controlled vari-

able ycv can be realized by the process. For instance, if a process

reacts with second-order dynamics to input changes, a first-order set-

point filter is not reasonable. Thus, the order r should reflect how

many stages of inertia a change in the manipulated variable u has to

overcome before changing the controlled variable ycv. If a process

model is available, the order r can be derived mathematically by ana-

lyzing the relative degree of the process model defined as the number

of times the controlled variable ycv has to be differentiated with

respect to time until the manipulated variable u appears explicitly.31 If

no process model is available, the order r needs to be chosen based

on knowledge or intuition about the main inertia of the process. In

this way, the set-point filter reflects the characteristics of the

open-loop system. The employed controller might add additional

dynamics to the closed-loop system, for instance, the integral part of

a PI-controller. Using the relative order of the open-loop process to

choose the relative order of the set-point filter is thus only reasonable

if it can be assumed that either the controller dynamics are signifi-

cantly faster than the process dynamics or the proportional part of

the controller dominates over the integral part. That is, our approach

might not work well in a case where the controller adds significant

dynamics to the closed-loop system. In such a case, the controller can

be changed, or alternative approaches that explicitly model the con-

trol behavior might be used instead. For instance, Dias et al.35 opti-

mize a schedule using a sequential optimization approach with the

controller being part of the simulation model. Thus, they optimize the

closed-loop system. Remigio and Swartz36 explicitly account for the

behavior of an underlying model predictive controller (MPC) by adding

the KKT-conditions of the MPC to the scheduling optimization

problem.

As discussed by Baldea et al.,25 the choice of the time constants

τi is critical for the performance of the scale-bridging approach: on the

one hand, if the time constants are too small, the scale-bridging

dynamics is too fast and cannot be realized by the controlled process.

On the other hand, if the time constants are too large, the scale-

bridging dynamics is overly conservative and process flexibility is

wasted. However, a rigorous way to tune the time constants τi is miss-

ing in the literature.

In this article, we argue that the time constants τi need to be

tuned simultaneously with the set-point bounds wmax
SP and wmin

SP . For

illustration, we consider a transition of the controlled variable starting

from a small value ystartcv and ending at a new steady state with a higher

value yendcv close to the maximum allowable value ymax
cv . To speed up

the transition, scheduling optimization might choose a set-point

wSP,elevated which is elevated above yendcv and even ymax
cv for a certain

period of time. However, choosing an elevated set-point value can

lead to dynamics that are too fast for the controlled process. In par-

ticular, if the time constants τi are small, the scale-bridging dynam-

ics is already fast and an elevated set-point may drive the

controlled variable to infeasible values. A trade-off arises because

we want to choose small time constants in general but also want to

avoid slow transitions toward the bounds of the controlled

variable.

In our case studies, we tune the scale-bridging parameters using a

simple heuristic relying on simulations. Alternatively, existing knowl-

edge about the time constants of the process, or measurements can

be used to calibrate the SBM.

2.2 | Scheduling optimization problem

To derive a complete problem formulation based on Equations (2) and

(3), we add a suitable objective function, discretize time, and add

inequality constraints to account for variable bounds, minimum part-

load, and problem-specific constraints.

The objective Φ in simultaneous DR scheduling is to maximize

cumulative product revenue ΦProduct at final time tf minus the cumula-

tive energy costs ΦEnergy at final time:

4 of 19 BAADER ET AL.
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minΦ¼�ΦProduct tfð ÞþΦEnergy tfð Þ, ð4Þ

dΦProduct

dt
¼
X
p � P

Kpqp, ð5Þ

dΦEnergy

dt
¼

X
e � 

KePe

with ΦProduct t0ð Þ¼ΦEnergy t0ð Þ¼0:

ð6Þ

Here, P is the set of products, qp the flow rate of product p, and Kp

the price of p. Similarly,  is the set of end-energy forms consumed,

Ke is the time-dependent price of energy e, and Pe is the consumed

power of energy e. t0 denotes the initial time.

For time discretization, we use three time grids (Figure 3). Grid 1 is

given by the electricity market and contains piece-wise constant electric-

ity prices with time step Δtelec, for example, 1 h or 15 min. Grid 2 con-

tains discrete decision variables z and piece-wise constant set-points

wSP. The resolution of grid 2 should not be too fine as it increases the

number of integer variables and thus the combinatorial complexity of

the optimization problem. Still, it should be possible to alter discrete

decisions z and set-points wSP at least at every step change of electricity

prices. Thus, the electricity price time step resolution should constitute a

lower bound on the resolution of grid 2. Making grid 2 finer than grid

1 by selecting time steps Δtdis < Δtelec, gives a higher flexibility and thus

might enable higher profits. We recommend to use time steps with

lengths Δtdis ¼ 1
n1
Δtelec with n1 being a small natural number.

Grid 3 is used for continuous variables x, y. Differential states x

are discretized using collocation. Similar to the argument above, we

propose to use finite elements with length Δtcont ¼ 1
n2
Δtdis. The natural

number n2 is chosen to be greater than or equal to one because

whenever electricity prices, discrete variables, or set-points perform

step-changes, a new collocation element is necessary such that non-

smoothness in differential states x is possible. In result, states x are

continuous at the border of collocation elements but first derivatives

are allowed to perform step changes.

Within a finite element fe of grid 3, a collocation polynomial xfe of

order Ncp is used to discretize differential states29,37:

xfe τð Þ¼
XNcp

j¼0

lj τð Þx fe ,j, τ� 0,1½ �, ð7Þ

lj ¼
YNcp

k¼0,k ≠ j

τ� τk
τj� τk

, ð8Þ

dx
dt

����
t fe ,k

¼ 1
Δtcont

XNcp

j¼0

x fe ,j
dlj τkð Þ
dτ

: ð9Þ

In Equations (7) and (8), the lj are Lagrange basis polynomial, τ is the

scaled time within a finite element, and x fe ,j is state value at dis-

cretization points. In Equation (9), dx
dt

��
t fe ,k

is the approximated time

derivative at a collocation point k, which is set equal to the right-hand

side of the linear differential equation (2) for every time point t fe ,k .

The term dlj τkð Þ
dτ is a constant parameter in the optimization because it

only depends on τ. Moreover, as we choose discrete time, Δtcont is

constant. Therefore, x fe ,j is the only optimization variable, and thus,

discretization with Equation (9) leads to linear constraints.

As inequality constraints, we consider upper and lower bounds

for all variables, minimum part-load constraints for energy system

components, and problem-specific constraints, for example, minimum

production targets. Minimum part-load constraints are realized with a

binary variable zon,c that indicates if the output power Pc,out of an

energy system component c is zero or between the minimal and maxi-

mal allowed value, Pmin
c,out and Pmax

c,out, respectively:

zc,onP
min
c,out ≤Pc,out ≤ zc,onP

max
c,out: ð10Þ

Assembling the discussed equations gives the simultaneous

scheduling optimization problem for the production process and its

energy system.

Our discussion focuses on energy-intensive processes that

can be operated flexibly and exhibit scheduling-relevant dynam-

ics. The energy demand of other processes also present at the

same chemical production site can be integrated in our MILP

scheduling optimization problem in straightforward manner: the

energy demand of processes with no or negligible flexibility can

be expressed as predefined time-varying demands that can be

added to the energy balances as constant terms. For processes

with negligible dynamics, quasi-steady state can be assumed and

the steady-state energy demand can be modeled as a piece-wise

affine function.38

3 | CASE STUDY 1: MULTIPRODUCT
REACTOR

In this section, we assess the computational performance of our

method in a first case study considering a multiproduct reactor. We

benchmark the economic value of SDS to a standard sequential

scheduling and to a nonlinear scheduling optimization with the true

process model.

set-points wSP

Continuous
variables x, y

Electricity
price

∆tdis

∆telec

∆tcont

Discrete variables z

F IGURE 3 Three time grids used for discretization with timesteps
Δtelec, Δtdis, Δtcont, respectively

BAADER ET AL. 5 of 19
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3.1 | Setup

The setup of the case study is visualized in Figure 4. An exothermic

multiproduct CSTR is cooled with three CCs. We use an exemplary

reactor model from Petersen et al.39 In the CSTR, a component

A reacts to a component B. The reactor can produce three products

I, II, III, which are defined by the desired concentration of compo-

nent A, CA. We assume a small tolerance of ±0.01 mol/L such that

for each product, we obtain a product band. Whenever the concen-

tration CA is within one of the three product bands, the associated

product is produced. If the concentration is outside of the three

product bands, which happens necessarily during transitions, no

product is produced. For illustration, we consider prices of 1, 0.75,

and 0.5 money unit (MU) (Table 1) and require a minimum daily pro-

duction of 5 h and a maximum daily production of 8 h for each

product.

In the CSTR model, the rate of change for the concentration of

component A is given by the material balance and the rate of change

for the temperature T is given by the energy balance:

dCA

dt
¼ q
V

CA,feed�CAð Þ�ke�
EA
RTCA , ð11Þ

dT
dt

¼ q
V

Tfeed�Tð Þ�kΔHr

ϱCP
e�

EA
RTCA� Qcool

ϱCPV
: ð12Þ

In Equations (11) and (12), q is the flow rate, V the reactor volume,

CA,feed the feed concentration, k the reaction constant, EA the acti-

vation energy, R the gas constant, Tfeed the feed temperature, ΔHr

the enthalpy of reaction, ϱ the density, CP the heat capacity, and

Qcool is the cooling provided to the reactor. The parameter values

listed in Table S1 are exemplary values from Petersen et al.,39

except that we varied the activation energy EA to obtain an

operating temperature where cooling with compression chillers is a

realistic option.

An efficient chiller is used for base-load cooling, whereas chiller

2 has a medium coefficient of performance (COP), and chiller 3, which

has a low COP, is used for peak cooling (see Table 2). We use the

compression chiller model from Voll et al.7 with a minimum part load

of 20% and a COP depending on nominal COP, COPnom
CC,i , cooling load

QCC,i, and nominal cooling load Qmax
CC,i:

COPCC,i ¼COPnom
CC,i 0:8615q3CC,i�3:5494q2CC,iþ3:679qCC,iþ0:0126

� �
,

withqCC,i ¼
QCC,i

Qmax
CC,i

:

ð13Þ

Note that this case study is meant to be an illustrative example

rather than a real case. It allows us to study whether the proposed

method is able to consider process dynamics and discrete on/off-

decisions for energy system components simultaneously. We want to

stress that even though the original nonlinear process model is a

small-scale model, the resulting SBM (i) would have the same basic

structure and computational complexity if a larger process model

would be considered as the number of scheduling-relevant dynamics

is typically small.4,25,26

We employ conventional PID control31 to track the filtered set-

point for the concentration CA by manipulating the cooling power

Qcool:

Qcool ¼KP eþ τD
de
dt

þ 1
τI

ðt
0
edt

� �
þQPID,0

cool , with e¼wSP,fil�CA: ð14Þ

The controller parameters in Equation (14) are: KP, τD, τI, and QPID,0
cool .

We choose QPID,0
cool to be the steady-state cooling power of product II

(Table 1) and manually tune the remaining controller parameters in a

simulation such that the filtered set-point wSP,fil is tracked stably and

accurately. The resulting parameters are: KP ¼1000MJL=hmol,

τD = 0.1 h, and τI = 0.2 h. The stable and accurate set-point tracking

is shown in the following (Figure 6).

3.2 | Simultaneous dynamic scheduling

To apply our SDS method, we now set up the three parts of our

model and the scheduling optimization problem as presented in

Section 2.

F IGURE 4 Case study 1: simultaneous scheduling of a continuous
stirred tank reactor (CSTR) cooled by three compression chillers (CC1,
CC2, CC3). Time-varying electricity prices provide an economic
incentive for DR.

TABLE 1 Product band Cmin
A,p ,C

max
A,p

h i
in mol/L, price KP

p in money
unit (MU)/m3, and cooling power in steady-state production Qsteady

cool,p in
MJ/h, for products p � {I, II, III}

p Cmin
A,p ,C

max
A,p

h i
KP
p Qsteady

cool,p

I [0.09, 0.11] 1 6.05

II [0.29, 0.31] 0.75 5.43

III [0.49, 0.51] 0.5 4.65

TABLE 2 Nominal cooling power Qmax
CC,i and coefficient of

performance COPnom
CC,i for compression chillers

Compression chiller Qmax
CC,i (MJ/h) COPnom

CC,i

1 4.8 6

2 2.3 4.5

3 1.5 3
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3.2.1 | Scale-bridging production process model

As discussed in Section 2, we need to choose the order r, the time

constants τi, and the set-point bounds wmin
SP , wmax

SP for the scale-

bridging production process model (i). The relative order of the open-

loop process is 2, as can be seen from the physical process model: the

manipulated variable Qcool does not appear in the first derivative of

the controlled variable CA (Equation (11)). If Equation (11) is differenti-

ated with respect to time and the term dT
dt is replaced using

Equation (12), the second time derivative d2CA

dt2
appears as an explicit

function of the input Qcool. Thus, the open-loop system has a relative

degree of 2. The more descriptive explanation is that a change in the

cooling power Qcool has to first overcome the inertia of the tempera-

ture T and then the inertia of the concentration CA. As discussed in

Section 2, we choose the order of the set-point filter equal to the rela-

tive order of the open-loop process, that is, r = 2. Our simulation

results show that the second-order response can in fact be realized by

the closed-loop system (Figure 6).

Second-order systems are described in control theory by the

time constant of their natural oscillation β and a damping coeffi-

cient ζ.31 The two tunable time constants τ1 and τ2 can be

expressed as:

τ1 ¼2ζβ, ð15Þ

τ2 ¼ β2: ð16Þ

Following Du et al.,24 we choose a critically damped response, that is,

ζ = 1, as we want to have fast but no oscillating dynamics.

In the following, we describe the heuristic procedure used to

define the remaining time constant β simultaneously with the bounds

for the set-point wmax
SP and wmin

SP . The allowed range of the set-point

must at least cover the operating range of the concentration CA which

is between Cmin
A ¼0:1mol=L and Cmax

A ¼0:5mol=L. However, as dis-

cussed in Section 2, it is reasonable to allow elevated set-points in

order to avoid overly conservative transitions toward the bounds of

the concentration CA. We introduce an elevation constant welevation
SP

and calculate the bounds of the set-point as:

wmax
SP ¼Cmax

A þwelevation
SP , ð17Þ

wmin
SP ¼Cmin

A �welevation
SP : ð18Þ

We want to find a combination of β and welevation
SP that (a) is feasible,

that is, the filtered set-point can be tracked accurately without oscilla-

tions, and (b) allows for fast product transitions. In the following, we

first present a routine to evaluate the feasibility and speed for a given

combination of β and welevation
SP and then explain how we explore the

space of possible combinations.

To evaluate a combination of β and welevation
SP , we first optimize

and then simulate all six possible transitions between the three prod-

uct bands. Thus, each of the six transitions starts at a product pi

and ends at another product pj, i≠ j. For a given combination of

β and welevation
SP , we perform the following four steps for each

transition:

1. As we assume that a fast transition is more critical than a slow

one, we optimize a trajectory of set-points wSP(t) using model

(i) to start from product pi and reach the product band of prod-

uct pj as fast as possible. To generate this as-fast-as-possible

set-point trajectory, we use exactly the same constraints as in

the scheduling optimization. The resulting optimization problem

reads:

min
wSP tð Þ

�
Xtf
t0

zpj tð Þ, ð19Þ

s:t: wSP,fil tð Þþ2β
dwSP,fil

dt tþβ2
d2wSP,fil

dt2

�����
�����
t

¼wSP tð Þ 8t� t0,tf½ �, ð20Þ

wSP,fil tð Þ� Cmin
A,pj

þεp
� �

≥ � 1� zpj tð Þ
� � 8t� t0,tf½ �, ð21Þ

Cmax
A,pj

� εp
� �

�wSP,fil tð Þ≥ � 1� zpj tð Þ
� � 8t� t0,tf½ �, ð22Þ

Cmin
A �welevation

SP ≤wSP tð Þ≤Cmax
A þwelevation

SP 8t� t0,tf½ �, ð23Þ

wSP,fil t0ð Þ¼CA,pi , ð24Þ

dwSP,fil

dt

����
t0

¼0: ð25Þ

In Equations (19)–(25), zpj tð Þ is a binary indicating if the filtered

set-point wSP,fil has reached the band of the desired product pj.

Accordingly, zpj tð Þ is 1 if Cmin
A,pj

þεp ≤wSP,fil tð Þ≤Cmax
A,pj

� εp where εp is

a small tolerance which we set equal to 0.003 mol/L. The value of

zpj tð Þ is enforced by Equations (21) and (22). Equation (20) is the

SBM (i) and Equation (23) bounds the piece-wise constant set-

point wSP. Time discretization with collocation converts the

dynamic optimization problem to an MILP.

2. We take the resulting set-point trajectory wSP(t) as input to a simu-

lation of the set-point filter, the underlying PID-control, and the

nonlinear process model.

3. Based on the simulation result, we check if the transition is feasi-

ble. We consider a transition to be feasible if (a) the concentration

reaches the product band of the desired product pj and (b) the con-

centration stays inside the band of pj once this product band is

reached.

4. We store the time needed to reach the product band Δts, which is

calculated from the simulation result as the simulation gives the

true closed-loop response.

A combination of β and welevation
SP is considered feasible if all six

transitions are feasible. We measure the quality of feasible parameter

combinations by the sum of all six transition times, that is,

BAADER ET AL. 7 of 19
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Δtsum ¼
X
s � 

Δts, ð26Þ

where  is the set of possible transitions. As we aim for fast transi-

tions, we prefer feasible combinations of β and welevation
SP with a small

value of Δtsum.

To explore the space of possible combinations, we first set the

set-point elevation to zero, that is, welevation
SP ¼0mol=L, and start with

β = 0.1 h. We increase β by steps of size Δβ = 0.01h and evaluate if

all six product transitions are feasible. That is, for every value of β, we

repeat steps 1–4 for all six transitions. The smallest time constant β

for which all six transitions are feasible is βmin = 0.26 h. Starting from

βmin = 0.26h, we continue to increase β and additionally allow a set-

point elevation. For every value of β, the set-point elevation welevation
SP

is increased by steps of size Δwelevation
SP ¼0:01mol=L until one of the

transitions becomes infeasible. That way, we find the highest possible

set-point elevation for every β.

As Figure 5 shows, exploring the trade-off between set-point ele-

vation and time constants improves the SBM performance signifi-

cantly. The smallest, that is, fastest, possible time constant

βmin = 0.26 h, which does not allow any set-point elevation, leads to a

combined transition time of Δtsum = 6.23 h. The slightly higher time

constant β = 0.36 h in combination with a set-point elevation of

welevation
SP ¼0:15mol=L allows to reduce the transition time by 35% to

the optimum of Δtsum = 4.04h. The resulting transitions with the cho-

sen optimal values are shown in Figure 6. Note that the set-point ele-

vation is not strictly increasing with β due to the discretization. For

example, with β = 0.49 h, a set-point elevation of welevation
SP ¼

0:26mol=L is feasible, whereas for β = 0.50 h, welevation
SP ¼0:26mol=L is

not feasible. The reason is that in one transition the set-point is at

wmax
SP ¼0:76mol=L for one discretization time step longer with

β = 0.50 h compared to β = 0.49h leading to a slight overshoot of the

concentration out of the product band.

3.2.2 | Energy demand model

As discussed in Section 2, model (ii) is needed in scheduling optimiza-

tion to predict the process energy demand. In this case study, model

(ii) needs to predict the cooling power Qcool as a function of the con-

trolled variable ycv, which is the concentration CA, and its time deriva-

tives. Note that, in principle, the cooling power Qcool is a process

degree of freedom; however, the cooling power is set by the underly-

ing PID-controller (Equation (14)). In scheduling optimization, the

degree of freedom is the piece-wise constant set-point wSP for the

concentration CA. This piece-wise constant set-point wSP is filtered,

resulting in a reference trajectory for both CA and its time derivatives

(compare to Figure 2). Thus, the data-driven energy demand model

Time [h] Time [h] Time [h]

F IGURE 6 Six possible transitions between the three products with the chosen time constant β = 0.36 h and set-point elevation welevation
SP ¼

0:15mol=L (compare to Figure 5). The piece-wise constant set-point from optimization wSP results in a filtered set-point wSP,fil, which can be
tracked accurately such that the actual value of the concentration CA resulting from the controlled nonlinear process model matches the filtered
set-point wSP,fil well.

F IGURE 5 Result of the parameter tuning: maximum allowable
set-point elevation welevation,max

SP (top) and sum of all six transition times
Δtsum resulting with welevation,max

SP (bottom) for different values of the
time constant β. We choose the optimal, that is, smallest Δtsum by
setting β = 0.36h and welevation

SP ¼0:15mol=L.
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must approximate the response of the closed-loop system as a func-

tion of CA and its time derivatives.

As the operation of the multiproduct reactor is divided in produc-

tion and transition periods and we need to model the cooling power

accurately in particular during the long production periods, we split

Qcool into a steady state and a dynamic part:

Qcool ¼Qsteady
cool þQdynamic

cool : ð27Þ

To approximate the first contribution Qsteady
cool , we assume that steady-

state cooling powers are known for all three products and interpolate

Qsteady
cool as a piece-wise affine function of CA. The three steady-state

operating points CA ¼ 0:1mol=L, 0:3mol=L, 0:5mol=Lf g with

corresponding cooling powers Qsteady
cool lead to two piece-wise affine

segments: the first affine segment approximates Qsteady
cool for

CA ≤0:3mol=L and the second affine segment approximates Qsteady
cool for

CA ≥0:3mol=L. With the binary variable zsteadycool , we can express

Qsteady
cool as

Qsteady
cool ¼Qsteady

cool,0:3mol=Lþmsteady
1 1� zsteadycool

� �
CA�0:3mol=Lð Þ

þmsteady
2 zsteadycool CA�0:3mol=Lð Þ, ð28Þ

where Qsteady
cool,0:3mol=L is the steady-state cooling power at

CA ¼0:3mol=L, msteady
1 is the slope for CA ≤0:3mol=L, and msteady

2 is

the slope for CA ≥0:3mol=L. The slopes msteady
1 and msteady

2 are calcu-

lated from the cooling power at steady-state operating points

(Table 1). The bilinear terms zsteadycool CA are reformulated using the

Glover reformulation.40

The approximation of Qdynamic
cool is fitted to simulation data. Again,

we simulate all six possible transitions using the nonlinear reactor

model and the underlying control. The resulting cooling power is the

red curve in Figure 7. The total cooling power deviates from Qsteady
cool

(dashed green curve in Figure 7) during transitions. We model the

dynamic part of the cooling power Qdynamic
cool as a linear function of the

derivatives of the concentration, that is,

Qdynamic
cool ¼ c1

dCA

dt
þc2

d2CA

dt2
, ð29Þ

with the two fitting parameters c1, c2, whose values are determined

using the normal equation method.41 The values are:

c1 ¼�3:10MJL=mol, c2 ¼0:444MJLh=mol . The resulting approxima-

tion of Qcool is shown in blue in Figure 7. Note that in Figure 7, the

concentration does not reach steady state after entering the product

bands. Still, the fitted dynamic cooling power Qdynamic
cool is negligible for

five of six production phases and only in the second production phase

a small offset between model and actual cooling power occurs. The

purely linear model in Equation (29) is the simplest possible choice to

model the dynamic part and already leads to satisfying results. In case

study 3, a more complex model accounting for internal process states

is demonstrated.

3.2.3 | Energy system model

For the energy system model (iii), we have to calculate the electric

input power PCC,i needed for the compression chillers as a

function of the required cooling power QCC,i. As the COP of

the compression chillers depends on the part-load fraction

(Equation (13)), PCC,i is a nonlinear function of QCC,i, which we

approximate as a piece-wise affine function. We use two piece-

wise affine segments per chiller with the breakpoint at 70% part

load; two segments provide a good approximation.7 The piece-

wise affine curves can be modeled without introduction of addi-

tional binary variables, as the electric input power PCC,i is a

convex function of the cooling power QCC,i. Using equations from

Neisen et al.,42 we introduce two continuous variables yi,1, yi,2

that cover the two affine segments:

QCC,i ¼ yi,1þyi,2 8i¼1,2,3, ð30Þ

PCC,i ¼Pmin
CC,izon,CC,iþyi,1mi,1þyi,2mi,2 8i¼1,2,3: ð31Þ

In Equation (31), Pmin
CC,i is the electric input power at minimum part-

load of chiller i, zon,CC,i is a binary indicating whether chiller i is

active, and mi,1, mi,2 are the slopes within the two piece-wise affine

segments. Finally, we include the energy balance stating that the

cooling demand of the reactor must be matched by the compres-

sion chillers:

X3
i¼1

QCC,i ¼Qcool: ð32Þ

Further details on the scheduling optimization problem such as

discretization and problem-specific constraints are given in the

Supporting Information.

Time [h]

F IGURE 7 Fitting results for steady state and total cooling power
Qsteady

cool and Qcool, respectively, of the process energy demand model
(compare to Equations (27) and (28))
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3.3 | Sequential steady-state scheduling
benchmark

This benchmark represents a typical sequential scheduling without

DR, referred to as SEQ in the following. First, the process schedule is

optimized with only the product revenue ΦProduct in the objective

function. Second, the energy costs are minimized for fixed production

decisions. Detailed information are given in the Supporting

Information.

3.4 | Scheduling with full nonlinear model

To estimate an upper bound on the economic performance of simulta-

neous scheduling, we perform an optimization with the nonlinear full-

order system model. To this end, we replace the models (i), (ii), (iii) in

the optimization problem with the nonlinear reactor model

(Equations (11) and (12)) and the nonlinear compression chiller effi-

ciency (Equation (13)). Again, time is discretized using collocation and

we receive an MINLP. We solve the MINLP optimization problem

using BARON version 21.1.1343 in heuristic mode, that is, the

resulting solution is no rigorous bound. We refer to this benchmark as

MINLP. To obtain a feasible initial point, we fix the binary variables to

the values resulting from our SDS and solve the resulting NLP.

3.5 | Results

In this section, we compare the economic profit obtained with our

SDS to the sequential scheduling (SEQ) and the full-order nonlinear

scheduling (MINLP). While in case of the MINLP the profit is

the objective value in the optimization, for the sequential scheduling

and the SDS, the profit is derived from a simulation of the

original nonlinear process model. Accordingly, the optimized set-point

sequence is used as input to a simulation of the underlying controller

and the nonlinear process model.

The MINLP solution improves the SEQ solution by 5.5%. Our

SDS gains 5.2% compared to SEQ and thus captures 95% of the

MINLP improvement. The improved economics mainly stem from DR,

that is, products with higher cooling demands are produced at times

Time [h]

F IGURE 8 Electricity price Kelec and simulated cooling power
Qcool for simultaneous dynamic scheduling (SDS) and sequential steady-
state scheduling (SEQ). SDS performs demand response and shifts
cooling power to times of favorable prices.

Time [h] Time [h]

F IGURE 9 Comparison of concentration CA and cooling power Qcool between simultaneous dynamic scheduling (SDS, left) and sequential
scheduling (SEQ, right). We indicate the three product bands (I, II, III) and the fraction of the cooling power Qcool that is supplied by the three
compression chillers (CC1, CC2, CC3).
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of lower electricity prices (Figure 8). Additionally, we notice a higher

energy efficiency during transition phases such that our SDS reduces

the amount of electricity consumed by 1.2% compared to SEQ.

Figure 9 shows concentration CA and cooling power Qcool for

both SDS and SEQ. In the case of SDS, the difference between the

optimization model and the actual cooling power during the transi-

tions is smaller than in the case of SEQ because the dynamics of the

cooling power are modeled in SDS while SEQ only considers the aver-

age cooling power during a transition. Modeling the dynamics of the

cooling power within a transition leads to better scheduling decisions

regarding the on/off status of the three compression chillers. The

most distinct difference occurs in the transition from product I to

product III. In the sequential scheduling, this transition features a high

cooling power peak, which requires to turn on chiller 3 with the worst

COP. In the case of SDS, the same transition is shaped such that it is

not necessary to turn on chiller 3. Moreover, SDS anticipates that

chiller 2 with the medium COP can be turned off during the second

half of the transition. We expect that energy efficiency improvements

are even higher in cases with longer transitions. Naturally, the poten-

tial for energy efficiency improvements depends on the accuracy of

the data-driven energy demand model (ii).

Note that in our illustrative example, we assume that once the

energy system components are active they can react instantaneously.

Moreover, we assume that the frequency of on/off-switches resulting

from the scheduling optimization with 15 min resolution for discrete

variables is acceptable. In practice, it might be necessary to consider

ramp limits,22 or minimum up and down times.20 Such constraints can

be added in a straightforward manner to the formulation if needed.

A solution with a 1.0% optimality gap is found and proven in

244 s. Such a solution time is applicable for both offline day-ahead

scheduling and online re-scheduling during the day, for example, with

a sampling time of 1 h. Note that in re-scheduling the solution from

the last scheduling-iteration can be used for initialization to further

speed up the optimization. We also observe that SDS finds good fea-

sible solutions quickly as shown in the convergence plot (Figure 10).

After 32 s, a solution is found that has only 4.4% gap to the final

lower bound and already outperforms the sequential scheduling.

3.5.1 | Influence of time constant β

If a nonlinear process model is not available, the time constant β can-

not be chosen as in this case study but needs to be chosen based on

intuition or recorded product transitions. In result, the time constant

might be suboptimal. To study the influence of the time constant

choice on the profit, the time constant in our case study is increased

from the optimal value β = 0.36 h by up to 100% (Figure 11). Note

that the profit is calculated in a simulation using the original process

model which leads to small differences between scheduling optimiza-

tion and process simulation and therefore the simulated objective

shown in Figure 11 does not strictly increase with β.

We find that as long as β is increased by 20% or less the objective

does not worsen more than 0.5%. This result can be explained by

the total production time which is 21.75 h for β = 0.36 h. These

21.75 h of production are still reached for β = 0.43 h and the loss in

profit is small. Generally, production time changes in 0.25 h steps

corresponding to the time discretization of the binary variables (com-

pare to the Supporting Information). When β is increased by more

than 20% above the optimal value, production is lost and the objec-

tive substantially worsens. But, even for a 50% increase, the objective

is still better than that of the sequential solution.

4 | CASE STUDY 2: REACTOR WITH
VARIABLE CONCENTRATION

While multi-product processes are one example for scheduling-rele-

vant dynamics, single-product processes can also introduce dynamics

if they can vary their controlled variable around a nominal value as

long as the nominal value is reached on average over the considered

time horizon. To demonstrate that our SDS also works for a single-

product case, we present a second case study and again study the

influence of the time constant. The second case study is constructed

by modifying the first one.

0 100 200

−1,000

−900

Optimization runtime [s]

O
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e
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)]

upper bound
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F IGURE 10 Convergence plot of simultaneous dynamic scheduling

F IGURE 11 Objective (in money unit [MU]) and total production
time tProduction for different time constants β starting from nominal
β = 0.36 h up to β = 0.72 h. The objective values resulting from the
sequential approach (SEQ) and MINLP optimization with both 21.75 h
of production are shown for comparison (dashed and dotted lines,
respectively).
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4.1 | Setup

A similar setup is used as in the previous case study with a CSTR and

three compression chillers (Figure 4). Instead of a multi-product CSTR,

we assume a single-product CSTR with a nominal concentration

Cnom
A ¼0:3mol=L. The CSTR has flexibility because we assume that

the concentration is allowed to vary between Cmin
A ¼0:09mol=L and

Cmax
A ¼0:51mol=L as long as the nominal concentration is reached on

average over the time horizon tf� t0. Accordingly, the condition

ðtf
t0

CAdt¼Cnom
A tf � t0ð Þ ð33Þ

has to hold. Such setups occur when the product can be stored and is

well-mixed in the storage tank. Note that an equation of this type

would also occur for processes having a variable production rate as

controlled variable ycv. Only the concentration CA in Equation (33)

would have to be replaced by the production rate.

Obviously, it is favorable to operate at concentrations with a high

cooling demand at times of low electricity prices and at concentra-

tions with low cooling demand at times of high prices. The challenge

for scheduling optimization thus is to find a trajectory for the concen-

tration that (a) can be realized by the process and (b) reaches the nom-

inal concentration on average. At the same time, the on/off status of

the chillers has to be determined. Note that the scheduling problem

has three differences compared to the previous case:

1. Only the cumulative energy costs at final time ΦEnergy(tf) are con-

sidered in the objective (Equation (4)) since the production volume

is fixed.

2. All constraints associated with the different products and the pro-

duction bands are removed (Equations (S1), (S2), (S6)–(S10)).

3. Equation (33) is included such that the nominal concentration is

reached on average.

As energy costs are the only objective function in the second case

study, a sequential scheduling is not applicable because there is no

objective for the process optimization. Thus, we benchmark our SDS

against a steady-state operation of the CSTR at the nominal concen-

tration. Again, as a second benchmark, an MINLP optimization is per-

formed using BARON in heuristic mode. A feasible initial point is

found by fixing the binary variables to the values from our SDS and

solving the resulting NLP.

4.2 | Results

The MINLP solution improves the steady-state solution by 6.7%. Our

SDS reduces costs by 5.5% compared to the steady-state benchmark

and thus captures 82% of the MINLP improvement. The optimization

runtime of our SDS approach is only 55 s. Note that again the MINLP

optimization with BARON does not provide a feasible point without

initialization from the SDS solution.

Compared to case study 1, the choice of the time constant β has

a much lower impact on the economic result (Figure 12). Note that we

use the same time constant β as in case study 1, because the transi-

tions studied during tuning cover the complete range of allowed con-

centrations. If β is doubled from 0.36 to 0.72 h, the cost reduction still

amounts to 5.4% compared to steady-state operation (Figure 12). The

operation is very similar for both time constants and the cooling

power only deviates significantly in hours 1, 6–7, 11, and 16–17

(Figure 13). In hours 16 and 17, the schedule with β = 0.72 h drives

the reactor from minimum concentration to maximum concentration.

The higher flexibility of the low time constant β = 0.36 h allows to

consume more cooling in hour 16 and less in hour 17 compared to the

case where β = 0.72 h. Still, the larger time constant can capture the

main trend of the electricity price profile, which has a peak in the

morning and another one in the afternoon. Such a price profile is typi-

cal for the German market where the main price periodicities are

24 and 12 h.38 Even if β is increased by a factor of 10, the scheduling

F IGURE 12 Energy costs Φenergy(tf) (in money unit [MU]) in the
second case study achieved with simultaneous dynamic scheduling
(SDS) for different time constants β normalized to nominal value
βnom = 0.36 h. The energy costs resulting from steady-state operation
and the MINLP benchmark are shown for comparison (dashed and
dotted lines, respectively).

Time [h]

F IGURE 13 Electricity price Kelec, concentration CA, and cooling
power Qcool in the second case study for three values of the time
constant β
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can still capture the main trend of the electricity price profile

(Figure 13). Therefore, significant cost reductions can be reached even

if the chosen time constants are far above the optimal value.

5 | CASE STUDY 3: DISTILLATION
COLUMN WITH VARIABLE PURITY

In this section, we study a case similar to the second case but, instead

of a SISO CSTR, we consider a distillation column as a MIMO process.

The purity of both top and bottom product can be varied throughout

the day as long as the desired purity is reached on average.

5.1 | Setup

The heat demand of a distillation column is satisfied by two CHPs and an

EB (Figure 14). Electricity produced by the CHPs is sold to the electricity

grid. For the distillation column, we use a generic benchmark model of a

binary distillation proposed by Skogestad and Morari44 together with a

liquid flow model from Skogestad et al.45 The column model consists of

N + 1 mass balances of the light boiling component and N + 1 mass bal-

ances of the liquid hold-ups where N = 40 is the number of theoretical

trays. In total, the column model has 82 differential states. It is assumed

that the heat demand of the column is proportional to the boilup flow

rate V and the heat demand is scaled such that the column requires

1 MW of heating in nominal operation. The two CHPs have 800 and

500 kW nominal thermal power and are subject to 50% minimum part-

load constraints.7 The EB has 800 kW nominal power and a 20% mini-

mum part-load constraint.46 Further details on the distillation model and

the CHP and EB models are given in the Supporting Information.

For the column, the feed flow F is fixed by an upstream process.

Four flows can be manipulated: the reflux flow rate L, the boilup flow

rate V, the distillate flow rate D, and the bottom flow rate B. Accord-

ingly, the vector of manipulated variables is

u¼

L

V

D

B

0
BBB@

1
CCCA: ð34Þ

The variables to be controlled are the vapor mole fraction of the light

component entering the condenser yD, its liquid mole fraction in the

bottom flow xB, the condenser hold-up MD, and the condenser hold-

up MB:

ycv ¼

yD
xB
MD

MB

0
BBB@

1
CCCA: ð35Þ

We couple the mole fractions yD and xB with each other by defining

the purity ρ which is equal to yD and 1 � xB. The coupling yD = 1 � xB

can be applied in this case study, as the feed purity zF is 50% and in

steady-state both bottom flow rate B and the distillate flow rate D are

equal to 50% of the feed flow rate F. A more general case is discussed

in the Supporting Information.

The hold-ups MD and MB shall be maintained constant at their

nominal values Mnom
D and Mnom

B irrespective of the current purity ρ.

Accordingly, the vector of filtered set-points wSP,fil can be given as a

function of the filtered purity set-point ρSP,fil:

wSP,fil ρSP,fil
� �¼

ρSP,fil
1�ρSP,fil
Mnom

D

Mnom
B

0
BBB@

1
CCCA: ð36Þ

The purity ρ can be varied between ρmin = 0.85 and ρmax = 0.95 as

long as the nominal value ρnom = 0.9 is reached on average.

To this end, we use two PI controllers31 to control the mole frac-

tions yD and xB by manipulating the flow rates L and V, respectively.

Further details are given in the Supporting Information. For the hold-

ups Mnom
D and Mnom

B , we do not model the controllers explicitly but fol-

low the common assumption that an underlying control sets the flows

D and B such that the hold-ups are controlled perfectly.44

With this case study, we demonstrate that a MIMO process does

not necessarily lead to a MIMO SBM (cf., discussion in Section 2).

Instead, controlled variables such as the mole fractions yD and xB can

be given as functions of a single scheduling-relevant variable such as

the purity ρ here. At the same time, other controlled variables, such as

the hold-ups MD, MB, need to be maintained constant irrespective of

the scheduling-relevant variable. As a consequence, instead of four

SBMs only one SBM describing the dynamics of the purity ρ is

needed.

5.2 | Simultaneous dynamic scheduling

In this section, we develop the three parts of our model.

For the scale-bridging production process model (i), a first-order

model is chosen because all four controlled variables in ycv can be

controlled with a relative degree r = 1 (cf. differential model equations

in the Supporting Information). Thus, model (i) for the filtered purity

set-point ρSP,fil is

F IGURE 14 Case study 3: simultaneous scheduling of a
distillation column heated by two combined heat and power plants
(CHP1, CHP2) and a electricity-driven boiler (EB). Time-varying

electricity prices provide an economic incentive for DR.
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ρSP,filþ τ
dρSP,fil
dt

¼ ρSP, ð37Þ

with one time constant τ that must be tuned. For the tuning, a similar

procedure as in the previous case studies is applied. Again, we study

six representative transitions. The aim is to find a time constant τ and

set-point bounds ρmin
SP , ρmax

SP that give fast transitions. At the same time,

deviations between yD and ρSP,fil and between xB and 1� ρSP,fil need

to be within a certain tolerance. Details on the tuning are given in the

Supporting Information. The resulting values are τ = 10 min,

ρmin
SP ¼0:8485, ρmax

SP ¼0:9515.

For the energy demand model (ii), we split the vapor flow V into a

steady-state and a dynamic part (compare to Equation (27)), that is,

V¼VsteadyþVdynamic, ð38Þ

where Vsteady is modeled as a piece-wise affine function with two seg-

ments of the purity ρ because the vapor flow V in steady state is a

nonlinear function of the purity. The dynamic part Vdynamic is approxi-

mated by a linear model with the derivative of the scale-bridging vari-

able, dρSP,fildt , as input. However, in contrast to Equation (29), the model

for Vdynamic features an internal state xint and is given by

dxint
dt

¼ axintþb
dρSP,fil
dt

, ð39Þ

Vdynamic ¼ cxintþd
dρSP,fil
dt

, ð40Þ

with fitting coefficients a, b, c, d that are fitted to the simulated transi-

tions that result from the tuning of model (i) discussed above. The

rational for including an internal state xint is shown in Figure 15 where

one transition is visualized: after 15 min, the filtered purity set point

ρSP,fil has reached the steady-state value, that is, ρSP = ρSP,fil and
dρSP,fil
dt ¼0. However, the vapor flow V is not in steady state because

the uncontrolled states inside the column are not in steady state and

it takes roughly another 15min until steady state is reached. The

fitting constant a¼�0:14 1
min corresponds to a time constant of

7.1 min and represents internal dynamics of the column. We also

studied energy demand models with more than one internal state but

did not find significant improvements compared to the one with a sin-

gle internal state (Equation (39)).

With this third case study, we demonstrate the model-order

reduction capabilities of SBMs and data-driven models. The 82 differ-

ential states of the full-order column model are reduced to just

2 states: the filtered purity set-point pSP,fil and the internal state of

the energy demand model xint.

In the energy system model (iii), the part-load behavior of

the CHPs is modeled with one piece-wise affine segment leading to

a reasonable discretization.7 For the EB, a constant efficiency is

assumed.47

We use a quarter-hourly electricity price profile because

Δtelec = 15 min being similar to the time constant of the SBM

(τ = 10 min) presumably causes more pronounced dynamic operation

than in the previous case studies. The price profile is taken from the

German intra-day market and occurred on January 13, 2021.48 A dis-

cretization with Δtcont = 15 min and Ncp = 3 collocation points is

used. As the 15-min price profile causes excessive on–off switching of

the energy system components in preliminary investigations, we

require a minimum up-time of 1 h and a minimum down-time of 1 h

for all three energy system components. Such constraints are often

used in energy system optimization as excessive on–off switches

often have negative effects on component life-time.20 The scheduling

optimization problem is solved with Gurobi 9.1.249 on the same

machine as before. Again we use a 1% optimality gap.

5.3 | Benchmarks

We consider two benchmarks, a steady-state operation at nominal

purity and a sensitivity analysis where we halve the nominal time con-

stant τ = 10 min. The latter leads to operations with time constants

that render some transitions infeasible but allows us to estimate the

performance lost by the scale-bridging approach in comparison to an

optimization with the original full-order nonlinear process model that,

unlike the SBM, would not be limited by the slowest transition. We

perform this sensitivity analysis with smaller time constants since an

optimization with the full-order process model in this case study

would be too computationally challenging due to the large scale of

the MINLP.

Time [min]

F IGURE 15 Exemplary transition showing purity set-point ρSP
and filtered set-point ρSP,fil (top), reboiler flow V normalized to the
feed flow F calculated from full-order model and energy demand
model (Equations (38) and (40)) (middle), and the internal state xint of
the energy demand the model calculated based on Equation (39)
(bottom)
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5.4 | Results

Our SDS reduces costs by 4.3% compared to a steady-state operation

whose results are shown in Figure S3. The SDS optimization con-

verges to the pre-defined optimality gap of 1% within 125 s. Like in

the previous case studies, near-optimal feasible points are found even

faster (cf. Figure S4).

The resulting operation with the nominal time constant

τ = 10 min is shown in Figure 16. Due to the 15-min price profile, the

operation is more dynamic than in the previous case studies. The col-

umn is only operated in steady state between t = 3.5 h and t = 4 h

and between t = 8.25 h and t = 11.25 h. Still, the PI controllers track

the filtered set-point accurately for both mole fractions xB and yD

(Figure 16). The average mole fractions in the storage after the 1 day

scheduling time horizons are:

xaverageD ¼

ðt¼24h

t¼0h
xDDdt

ðt¼24h

t¼0h
Ddt

¼0:90040> ρnom ¼0:9, ð41Þ

xaverageB ¼

ðt¼24h

t¼0h
xBBdt

ðt¼24h

t¼0h
Bdt

¼0:09967<1�ρnom ¼0:1: ð42Þ

Thus, both top and bottom product stream achieve the desired purity

on average.

Figure 16 shows that the optimization seeks to operate the col-

umn at high purities and high heat demands at times of high prices

(e.g., hour 20–20.5). By supplying the required heat from the CHPs,

electric power can be sold to the market at a high price. However, also

at times of low electricity prices, a comparatively high heat demand

can be seen (e.g., hour 13.75–14.25 or 16–16.25). Here, the EB is

operated close to its maximum load because electricity is cheap. Only

Time [min]

F IGURE 16 Resulting operation for the third case study. Top: electricity price Kelec. Center: heat demand Q of the column (bold black line)
together with nominal value (dashed dotted line) and minimum and maximum steady-state heat demands (dashed lines). The portions of the heat
demand supplied by the two combined heat and power plants (CHP1 and CHP2) and the electricity-driven boiler (EB) are indicated with colors.
Bottom: actual values of bottom composition xB and top composition yD together with their respective filtered set-points wSP,fil

F IGURE 17 Energy costs Φenergy(tf) (in money unit [MU]) in the
third case study achieved with different time constants τ. The energy
costs resulting from steady-state operation are shown for comparison.
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at times of medium prices, the column is operated at low purities

resulting in a low heat demand (e.g., hour 3.25–4). These interactions

between the purity of the column and the on/off-status of energy

system components demonstrate the advantages of a simultaneous

scheduling of process and energy system.

In Figure 17, the sensitivity of the energy costs with respect to the

time constant τ is shown. For time constants above the nominal value,

the optimized energy costs are compared to simulated energy costs. The

energy costs obtained in the simulation are always slightly higher than

those predicted by the optimization due to inaccuracies of the data-

driven energy demand model (ii). Comparing different time constants, we

can conclude that the sensitivity toward the time constant is relatively

weak. For instance, when the time constant is doubled from τ = 10 min

to τ = 20 min, the simulated energy costs only increase by 0.5%.

To estimate the performance lost due to the conservatism of the

scale-bridging approach, we halve the nominal time constant

τ = 10 min and study the resulting optimized energy costs. Note that

this yields a lower bound for the energy costs as some transitions are

not feasible for the halved time constant τ = 5 min. However, this

lower bound is only 0.5% smaller than the optimized energy costs

with the nominal time constant (Figure 17). Thus, the 4.3% cost reduc-

tion achieved by our SDS approach already realizes most of the over-

all DR potential while being able to run within 5 min. We therefore

conclude that SDS offers a favorable compromise between solution

quality and optimization runtime.

6 | CONCLUSION AND DISCUSSION

For power-intensive processes, volatile electricity prices provide an

opportunity to increase profit via DR. A particularly promising DR

option is the simultaneous scheduling optimization of processes and

their energy systems. As such an optimization must consider

scheduling-relevant process dynamics as well as on/off-decisions in

the energy supply system, computationally challenging nonlinear

mixed-integer dynamic optimization (MIDO) problems arise. In this

work, we present an efficient SDS approach that relies on a tailored

scheduling model consisting of (i) a linear SBM for the closed-loop

response of the process, (ii) a data-driven model for the process

energy demand, and (iii) a mixed-integer linear programming (MILP)

model of the energy system. Using a discrete time formulation and

collocation, we receive an overall MILP formulation that can be opti-

mized in practically relevant times.

First, we apply the method to a case study of a multiproduct

CSTR cooled by three compression chillers. Compared to a typical

sequential scheduling, we find that the presented SDS approach

improves economic profit by 5.2%, just shy of the 5.5% found by

nonlinear scheduling optimization using the original nonlinear process

model. Second, we investigate a single-product reactor with a variable

concentration. Here, SDS outperforms a steady-state operation by

5.5% while a nonlinear scheduling reaches 6.7%. Third, we investigate

a distillation column heated by two CHPs and an EB. The distillation

column is a 4 � 4 MIMO process; however, one SBM is sufficient as

we couple top and bottom purity and hold condenser and reboiler

hold-up constant irrespective of the purity. We thereby demonstrate

the model-order reduction potential of our approach driving down the

number of states from 82 to 2. Cost reduction of 4.3% compared to

steady-state operation is achieved.

In all three case studies, the optimization runtime is sufficiently

fast for online optimization. As the proposed scheduling model always

has the same basic structure, we expect the method to be real-time

applicable in many cases.

A restriction of our method is that the scale-bridging approach

imposes a single common linear closed-loop response in all operating

regimes, which may cut off some of the process flexibility and thus DR

potential. For example, in our first case study, we must choose the time

constants of the enforced linear closed-loop response such that all six

product transitions are feasible. Due to the nonlinear behavior of the

CSTR, some of the transitions could in principle be performed faster;

however, the critical transition, that is, the slowest one, limits the time

constants for the SBM. Moreover, it may in general be difficult to find the

time constants that give the fastest possible linear closed-loop response.

Finding the time constants using the heuristic used in our case studies is

straightforward if the controlled process can be simulated and the rele-

vant transitions can be studied in numerical experiments. If several con-

trolled variables should be varied independently of each other, the

combinatorial complexity of the heuristic procedure would increase as

more than one SBM would be needed. Then, it might no longer be possi-

ble to simply sample the space of possible combinations but some kind of

black-box optimization may be required. For multi-product processes,

which are inherently dynamic, the time constants can also be chosen

based on recorded transitions. Our sensitivity study shows that, as long

as transition times are only moderately larger than necessary, costs can

still be reduced compared to a standard sequential scheduling. For pro-

cesses that are currently operated in steady state without DR, no

recorded transitions might be available. However, we demonstrate that,

for such processes, time constant choice is less critical as even greatly

suboptimal values may allow to follow slow trends in the electricity price

profile.

Overall, our results demonstrate that the proposed method offers

a favorable trade-off between accurate handling of dynamic flexibility

and online applicable optimization run-times.

NOMENCLATURE

Abbreviations
CC compression chiller

CHP combined heat and power plant

COP coefficient of performance

CSTR continuous stirred tank reactor

DR demand response

EB electricity-driven boiler

KKT Karush-Kuhn-Tucker

MIDO mixed-integer dynamic optimization

MILP mixed-integer linear programming
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MIMO multiple input multiple output

MINLP mixed-integer nonlinear programming

MPC model predictive control

MU money unit

PID proportional–integral–derivative

PI proportional–integral

SBM scale-bridging model

SDS simultaneous dynamic scheduling

SEQ sequential scheduling benchmark

SISO single-input single-output

SO-MPC scheduling-oriented model predictive control

Greek symbols
β time constant of natural oscillation

ε safety margin

ζ damping coefficient

ϱ density

ρ scheduling-relevant variable

τ time constant

τ scaled time

Φ objective

Latin symbols
A–H matrices

a, b,

c, d

fitting coefficients

B bottom flow rate

CA concentration of component A

cP heat capacity

D distillate flow rate

EA activation energy

F feed flow rate

f, g functions

fe finite element

ΔHr enthalpy of reaction

K price

KP proportional controller constant

k reaction constant

L reflux flow rate

l Lagrange polynomial

Mk hold-up of tray k

m linear slope

N number of trays

Ncp order of collocation polynomial

n natural number

P power

Q thermal power

q flow rate

R gas constant

r order of differential equation

T temperature

t time

u manipulated variable

V volume (case study 1 and 2) or boilup flow rate (case

study 3)

wSP set-point

x differential state

xk liquid mole fraction on tray k

y continuous variable

yk vapor mole fraction on tray k

z discrete variable

Sets
 end-energy forms

P products

 set of possible transitions

dis timepoints on discrete grid

Subscripts
0 initial

B reboiler

c component

cv controlled variable

cont continuous

cool cooling

D condenser

dis discrete

e end-energy form

ec energy costs

ed energy demand

elec electricity

f final

fe finite element

fil filtered

I integral

in input

int internal

on on–off status

out output

p product

s transition

SP set point

sum summed value

Superscripts
end final value

elec electricity

max maximum value

min minimum value

nom nominal

start starting value

steady steady-state value
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